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Abstract. Property is an asset which forms part of the portfolios of many investors, particularly institu-
tional ones, along with equities and bonds. Techniques from physics, particularly that of random matrix
theory, have provided powerful insights into the behaviour of financial assets. A large database providing
time series data for over 10,000 individual properties is available for the UK. Some of the data is available
at an annual and some at a monthly frequency. However, even at the monthly frequency, only a relatively
small number of observations is available, certainly in comparison with that available with financial assets.
A key issue in translating methods of analysis in financial markets to property data is whether they are
applicable given the small number of data points available. This paper addresses this issue. Using the tools
of random matrix theory, we find that a great deal of information is contained within property data. The
correlations between different types and geographical locations of property tend to have far more true
information and be more stable over time than is the case with financial data, despite the large number of
observations available with the latter.

PACS. 01.75.+m Science and society

1 Introduction

Property is an asset which forms part of the portfolios
of many investors, particularly institutional ones, along
with equities and bonds. Techniques from physics, partic-
ularly that of random matrix theory, have provided pow-
erful insights into the behaviour of financial assets (for
example, [1,8]).

A large database providing time series data for over
10,000 individual properties is available for the UK from
IPD Ltd.. Property funds allow IPD to gather informa-
tion on their individual properties, which IPD processes
and turns into more aggregate indices of performance, over
a range of property types and geographical locations. The
aggregations are available at either annual or monthly fre-
quency, depending upon the particular aggregation which
is carried out.

However, even at the monthly frequency, only a rela-
tively small number of observations is available, certainly
in comparison with that available with financial assets.
Monthly data is available from December 1986, and an-
nual data from 1981.

A key issue in translating methods of analysis in finan-
cial markets to property data is whether they are applica-
ble given the small number of data points available. This
paper addresses this issue. This paper describes the appli-
cation of techniques from Random Matrix Theory (RMT)
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in assessing the degree of information content (and its sta-
bility) contained within correlation matrices formed from
time series of property price data. The analysis is under-
taken for property data at both an aggregated regional
level (using IPD data) and also at the individual property
level using data from a major UK property fund.

2 The tools of random matrix theory

The techniques of Random Matrix Theory (RMT) have
recently been applied to financial market data to analyse
the true degree of information content contained within
empirical correlation matrices formed from equity re-
turns [1,8]. In addition to this the techniques have also
been applied to macroeconomic data [9,10].

The essence of the RMT approach of assessing the
degree to which an empirical correlation matrix is noise
dominated lies in comparing the eigenspectra properties
of the empirical matrix with the theoretical eigenspectra
properties of a random matrix. Undertaking this compar-
ison identifies those eigenstates of the empirical correla-
tion matrix which contain genuine information content.
These eigenstates are specific to the system under con-
sideration and are indicative of the presence of collective
modes of ‘motion’ of correlated groups of assets. The re-
maining eigenstates will be noise dominated and hence
unstable over time. The stability of the information con-
tent of the eigenmodes (that is to say the stability of the
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correlations between the assets in the portfolio) can be as-
sessed by analysing in more detail the precise structure of
the information carrying eigenmodes (for example [6,7]).

To quantify the degree to which genuine information is
contained within the correlation matrix, and the stability
of that information, quantitative measures of the spectral
properties of the correlation matrix are required.

In order to assess the degree to which an empirical
correlation matrix is noise dominated one may compare
the eigenspectra properties of the empirical matrix with
the theoretical eigenspectra properties of a random ma-
trix [11]. Undertaking this analysis will identify those
eigenstates of the empirical matrix which contain gen-
uine information content. The remaining eigenstates are
understood to be noise dominated and hence potentially
unstable over time. The eigenstates that contain genuine
information content are specific to the system under con-
sideration and are indicative of the presence of collective
modes of motion.

Consider a matrix M‖ of T observations of the prices of
N assets (at a frequency of e.g. monthly observations). In
the context of property data the N assets could correspond
to regional IPD indices or to individual properties. If the
inter-period logarithmic returns are defined as

Mi(t) = lnPi(t) − ln Pi(t − 1)

then the correlation matrix measuring the correlations be-
tween the N assets is given by

C‖ =
1

T − 1
M‖ M‖

T ·

If the T observations are i.i.d random variables then in
the limit N → ∞ and T → ∞ the density of eigenvalues,
λ , of the random correlation matrix C‖ is given by

ρC(λ) =
Q

2πσ2

√
(λmax − λ)(λ − λmin)

λ

for λ ∈ [λmin, λmax] where Q = T/N ≥ 1·
The upper and lower bounds on the theoretical eigen-

value distribution are given by,

λmax = σ2

(
1 +

1√
Q

)2

λmin = σ2

(
1 − 1√

Q

)2

(σ2 is the variance of the elements of M‖ , usually rescaled

to unity).
This range of eigenvalues corresponds to a random,

noisy subspace band where the postulates of RMT hold.
That is to say, the eigenvectors corresponding to eigen-
values within λmin < λ < λmax contain no genuine infor-
mation and the components of the associated eigenvectors
are indistinguishable from random noise.

The eigenvalue distribution of the empirical correlation
matrices can be compared to this ‘null-hypothesis’ distri-
bution and thus, in theory, if the distribution of eigenval-
ues of an empirically formed matrix differs from the above

distribution, then that matrix will not have completely
random elements. In other words, there will be structure
present in the correlation matrix. Each isolated eigenstate
outside of the RMT bounds represents a correlated group
of assets whose size and participants are obtained from
the eigenvalue and eigenvector respectively.

When the dimensions of the random matrix under con-
sideration are finite (but still ‘large’) this has the effect
of broadening the spectral distribution. However in these
instances Monte-Carlo simulation can generate what the
broadened eigenvalue distribution is expected to be.

To analyse the structure of the eigenvectors of the em-
pirical correlation matrix the inverse Participation Ratio
(IPR) may be calculated. The IPR is commonly utilised
in localisation theory to quantify the contribution of the
different components of an eigenvector to the magnitude
of that eigenvector (thus determining if an eigenstate is
localised or extended) [6].

Component i of an eigenvector να
i corresponds to the

contribution of time series i to that eigenvector. That is
to say, in this context, it corresponds to the contribution
of asset i to eigenvector α. In order to quantify this we
define the IPR for eigenvector α to be

Iα =
N∑

i=1

(να
i )4·

Hence an eigenvector with identical components
να

i = 1/
√

N will have Iα = 1/N and an eigenvector
with one non-zero component will have Iα = 1. Therefore
the inverse participation ratio is the reciprocal of the
number of eigenvector components significantly different
from zero (i.e. the number of assets contributing to that
eigenvector).

For those eigenvectors that deviate from the theo-
retically predicted bounds of RMT it is important to
quantify the degree of stability of the information content
of the eigenmode (i.e. the stability of the correlations
between the assets). This is necessary since spurious
correlations may be introduced by a particular choice of
data to calculate the correlation matrix from. We may
assess this stability by calculating the scalar product
of eigenvectors in non-overlapping analysis periods (for
an application to macro-economic data of this concept
see [10]). That is for two analysis periods TA and TB we
form the overlap matrix

O‖ (TA, TB) =



ν→
N (TA) · ν→

N (TB) . . . ν→
N (TA) · ν→

1(TB)
...

. . .
...

ν→
1(TA) · ν→

N (TB) . . . ν→
1(TA) · ν→

1(TB)


 ·

Hence if the eigenvector structure remains perfectly sta-
ble in time (i.e. the correlations between the assets con-
tributing to that eigenvector remain stable from period
to period) then each element of the overlap matrix would
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be equal to Oij(TA, TB) = δij . No inter-period stability
would imply that Oij(TA, TB) = 0.

The overlap matrix (the matrix of dot products of
each eigenvector with every other eigenvector in 2 non-
overlapping periods) is therefore a means to quantify the
degree of temporal stability in the correlations between
the assets.

3 Application to property data

3.1 IPD monthly regional data

The analysis is undertaken using the IPD monthly re-
gional data. This data extends from Dec. 1986 (at a bench-
mark index level of 100) until Feb. 2001. There are thus
171 observations. These observations are made for the
three property types (office, retail and industrial) and are
aggregated at a regional level. 35 different asset types were
used for the analysis (e.g. South East retails). The data
measures the total return on the assets in a particular re-
gion. The logarithmic returns are calculated (reducing the
number of observations to 170) and the spectral properties
of the empirical correlation matrix calculated.

In order to analyse this dataset it is first segre-
gated into a number of non-overlapping analysis pe-
riods. Given that we have 170 observations we may
segregate the data into two non-overlapping periods
of 85 observations each (corresponding to the peri-
ods Jan. 1987–Jan. 1994 and Feb. 1994–Feb. 2001)
or into 3 non-overlapping periods of 56 observations
each (corresponding to the periods Mar. 1987–Oct. 1991,
Nov. 1991–Jun. 1996, Jul. 1996–Feb. 2001).

For the 2 non-overlapping periods case we form the
correlation matrix from the relevant observations of the
price changes of the 35 regions and calculate the spec-
tral properties of the correlation matrix. In this case the
eigenvalue statistics are:

Period 1 Period 2

Theoretical minimum
eigenvalue

0.123 0.123

Theoretical maximum
eigenvalue

2.72 2.72

Number of eigenval-
ues below theoretical
minimum

12 12

Number of eigenval-
ues above theoretical
maximum

2 1

Number of eigenvalues
in the noise band

21 22

The corresponding eigenvalue statistics for the 3 non-
overlapping periods case are,

Period 1 Period 2 Period 3

Theoretical minimum
eigenvalue

0.041 0.041 0.041

Theoretical maximum
eigenvalue

3.23 3.23 3.23

Number of eigenval-
ues below theoretical
minimum

5 10 7

Number of eigenval-
ues above theoretical
maximum

2 1 1

Number of eigenvalues
in the noise band

28 24 27

In both cases we observe that there are a significant num-
ber of eigenvalues which lie outside of the noise sub-space
band. These eigenvalues demonstrate that there is present
within the correlation matrix genuine information to be
extracted.

For the 2 analysis period case we observe that the
largest eigenvalue is approximately 22, implying that 62%
of the total information within the correlation matrix is
contained within the market eigenmode. The correspond-
ing IPR for this eigenvalues eigenvector is 0.029, which is
very close to the value 1/35 which we would expect for an
eigenmode where all of the assets are contributing equally
(confirming that this eigenmode corresponds to the corre-
lated movements of the market as a whole). Similar results
are observed for the 3 non-overlapping case.

In order to verify that the RMT is detecting genuine
information we may repeat the analysis using the same
dataset which has been shuffled at random. That is each
of the 35 time series of 170 observations is shuffled at
random 10,000 times. This has the effect of preserving
the properties of the distribution of returns for each time
series (for example the mean and variance) but if there
is any temporal correlation in the asset price dynamics
this information will be completely removed from the time
series. In addition to this any cross-correlations between
the equal-time asset price dynamics will be removed.

Undertaking this analysis for the 2 and 3 non-
overlapping periods yields the results that in every anal-
ysis period all 35 eigenvalues of the empirical correlation
matrix lie within the noise sub-space band. This demon-
strates very clearly that there are non-trivial temporal cor-
relations present within the original data set.

To assess how stable these correlations remain over
time we may calculate the overlap matrix between the
eigenvectors in each analysis period. For the 2 non-
overlapping periods the diagonal elements of the overlap
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Fig. 1. The overlap between eigenvectors for 2 non-overlapping analysis periods.
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Fig. 2. Overlap matrix between 2 non-overlapping periods (randomly shuffled data).

matrix are plotted against the rank of the eigenvalue in
Figure 1. The rank corresponds to the eigenvalue e.g.
rank 1 in these examples corresponds to the largest eigen-
value. Rank 35 corresponds to the smallest eigenvalue. The
horizontal dotted line corresponds to the ‘noise’ level. This
is defined as 1/

√
N where N is the number of variables

(distinct time series) used in the analysis, which in this
case is equal to 35. Any measurement lying below this
line is indistinguishable from noise.

The two dotted vertical lines correspond to the bound-
aries of the noisy sub-space band. That is to say the eigen-
values below the lower vertical line correspond to those
eigenvalues which lie above the theoretical maximum for

a random matrix and the eigenvalues above the upper ver-
tical line are those eigenvalues which lie below the theoret-
ical minimum for a random matrix. Between these lines it
is to be expected that the overlaps between the eigenvec-
tors in the analysis periods will be subject to stochastic
fluctuations.

The noise band in this case is fairly narrow. Eigen-
vectors 1 and 2 have overlaps which are very large. We
would of course expect eigenvector 1 to have a significant
degree of stability since this corresponds to the ‘market’
eigenmode.
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Fig. 3. The overlap between eigenvectors for 3 non-overlapping analysis periods (periods 1 and 2).
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Fig. 4. The overlap between eigenvectors for 3 non-overlapping analysis periods (periods 2 and 3).

We may compare this with the overlap matrix calcu-
lated for the randomly shuffled dataset. This is shown in
Figure 2.

It is clear that there is a significant difference between
the two cases. In particular for the shuffled data there
is no structure in the correlations apparent whatsoever
(indeed most of the overlaps lie below the noise threshold
as we would expect). For the original data however it is
apparent that the high and low-lying eigenmodes have a
structure (i.e. the overlaps between these eigenvectors are
significantly different from pure noise)

Similar results are obtained for the case of 3 non-
overlapping periods. Shown in Figures 3 and 4 are the
overlaps between periods 1 and 2 and 2 and 3 respectively.

As with the 2 non-overlapping periods case it is appar-
ent that there is significant structure in the information
carrying eigenmodes. Repeating this analysis with the ran-
domly shuffled data yields the expected result that there
is no consistent structure in the overlaps between eigen-
modes.

3.2 IPD annual regional data

We may repeat the previous analysis using the annual IPD
regional data. In this case there are now only 20 yearly
observations of total return on properties in the 35 regions.

Because of the small number of observations we will
only consider segregating the data into 2 non-overlapping
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Fig. 5. The overlap between eigenvectors for 2 non-overlapping analysis periods (annual regional data).
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Fig. 6. he overlap between eigenvectors for 2 non-overlapping analysis periods (annual individual property data).

periods (period 1 corresponding to returns in the pe-
riod 1981–1990 and period 2 corresponding to 1991–2000).
Shown in Figure 5 is the overlaps between the eigenvectors
in the two periods as a function of the eigenvalue rank.

The graph is qualitatively the same as for the monthly
data. That is the largest eigenvectors remain highly stable
– the macro level, the mid – range eigenvectors are noisy
and the low lying eigenvectors display a degree of stability
that is significantly different from noise.

4 Application to individual property data

We may of course undertake the same analysis for the re-
gional data at the individual property level. This particu-

lar dataset corresponds to 56 individual properties taken
from a major property fund1 for which there exist a time
series of annual observations of total return for the period
1982–2000.

This dataset is segmented into two non-overlapping
periods and the overlap between the eigenvectors in the
two periods plotted in Figure 6.

Comparing this figure with that for the annual regional
data it is apparent that there is less stability in the correla-
tions between the price movements at an individual prop-
erty level than there is for the regional data. However the
largest eigenmodes do display a degree of stability that is

1 A condition of using this data is that the fund must remain
anonymous.
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significantly different from the noise threshold suggesting
that there is indeed genuine information contained within
the eigenmodes of the correlation matrix.

5 Conclusions

Despite the small number of observations available on the
returns on property, a great deal of information is con-
tained within the data. The correlations between different
types and geographical locations of property tend to have
far more true information and be more stable over time
than is the case with financial data, despite the large num-
ber of observations available with the latter.

An important reason for this is that a single factor
exercises a powerful influence over the property market,
namely the state of the business cycle. Properties of all
types and in all locations are influenced by this. Of course,
many other factors influence the property market, but the-
business cycle effect is strong. Almost all property returns
tend to rise sharply in a boom, and fall in a recession.
This gives considerable structure and stability to the cor-
relations within property portfolios.
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